Description
Hearing impairment is a serious health issue. A common cause of hearing damage in humans is exposition to high sound pressure levels over long periods of time. This is typical for noisy work environments (in which hearing protection mostly is mandatory now), but it can also appear in other, less obvious situations. Young people often are prone to listen to music at high sound pressure levels. This can be during concerts and in clubs, but also with headphones and portable audio players. (e.g. smartphones). The latter use case is especially dangerous because it rarely is perceived as hazardous. With headphones, it is very easy to reach critical sound pressure levels at the ear drum. Additionally, the duration of exposure typically is high (e.g. on the daily commute). The result – irreversible gradual hearing damage – most often is diagnosed when the damage has been done.

To curb further spread of hearing damage due to excessive sound pressure levels from headphones and portable audio devices, the EU has issued the norm EN 50332. It defines maximum output voltages for source devices as well as a maximum efficiency for headphones and earphones. This results in a natural limit to the maximum sound pressure level that can be achieved when these devices are combined. By making compliance with EN 50332 mandatory for such devices sold in the EU, manufacturers must test their products for compliance during development.

HEAD acoustics implemented the European norm in its entirety into the measurement standard EN 50332 for ACQUA. If desired, measurements can be modified or extended to conduct additional tests. Also, tests can be combined to create individual test sequences.

The EU norm EN 50332 is divided into two main parts:
- Measurements for combinations of mobile players and headphones / earphones sold as “one-package sets”
- Measurements for arbitrarily combined mobile players and headphones/earphones (sold separately by different manufacturers)

Overview of database revisions and specification versions

<table>
<thead>
<tr>
<th>Database Revision</th>
<th>Based on Specification Versions</th>
<th>Min. ACQUA Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>EN 50332-1 (08/2014), EN 50332-2 (08/2014), EN 50332-3 (04/2018)</td>
<td>4.0.100</td>
</tr>
</tbody>
</table>

(Older releases are available upon request)

Applications
- Automated analysis of maximum sound pressure level for headphones and earphones associated with portable audio equipment according to the European norms:
 - EN 50332-1/1-2014-08
 - EN 50332-2/1-2014-08
 - EN 50332-3/1-2018-04

The ACQUA standard EN 50332 addresses both parts, allowing evaluation of portable audio source devices and headphone/earphone separately. The connection between source and headgear can be wired (analog) or wireless via Bluetooth® A2DP.

In addition to portable audio devices like smartphones and standalone mobile players, the test suite also allows to test portable FM receivers for EN 50332 compliance.

The Bluetooth word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by HEAD acoustics is under license. Other trademarks and trade names are those of their respective owners.
Qualcomm aptX is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.
Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. aptX is a trademark of Qualcomm Technologies International, Ltd., registered in the United States and other countries.
General Requirements

- **ACQUA (Code 68xx)**, Advanced communication quality analysis system in one of the following versions:
 - Full License (Code 6810)
 - Workplace (Code 6830, for post-analysis and documentation only)
 - Compact Systems (Code 6860.xx)
- **labCORE (Code 7700)**, Modular Multi-channel Hardware Platform with
 - **coreBUS (Code 7710)**, labCORE I/O Bus Mainboard
 - **coreBEQ (Code 7740)**, labCORE Binaural Equalization Software Extension
 - **coreIN-Mic4 (Code 7730)**, Microphone input board

- One of the following **HEAD measurement systems**
 - **HMS II.3 (Code 1230)**, HEAD measurement system with ear simulator, pinna type 3.3 or 3.4 with
 - **HIS L (Code 1231)**, HEAD impedance simulator, left ear (only for HAE-BGN)
 - **HMS II.3-LN (Code 1230.3)**, HEAD Measurement System, Low-Noise Version with 3.3 Pinna, Right Ear Simulator & Artificial Mouth with
 - **HIS L-LN (Code 1231.3)**, HEAD impedance simulator, left ear, low-noise version

Options

- **coreBT (Code 7780)**, labCORE Bluetooth hardware/software extension (only required for Bluetooth tests)
- **coreBT-EXT (Code 7781)**, labCORE extended codec software (only required for Bluetooth tests with Qualcomm® aptX™)
- **CPB II (Code 6098)**, Adapter 6.3mm phones plug <> Banana plug male, for tests according to EN 50332
- **3.5mm <> 3.5mm phones adaptor** (not provided by HEAD acoustics, for headphones with 3.5mm plug only)
- **Radio Transceiver**, (not provided by HEAD acoustics, for FM tests only)

Delivery Items

- **EN-50332 (Code 6789)**, as ACQUA database
- **V2C file** (for ACQUA)

SMDs in ACQUA database

Part 1 & 3 – One-package set characteristics

- LAeq Run 1-5, Left Ear, Right Ear, Both Ears
- Calculate Mean LAeq, Left Ear, Right Ear, Both Ears
- CSD Measurements
- Check compatibility with EBU R 128 (optional)

Part 2 & 3 – Player characteristics

- Measure Max. Output Voltage, Left Channel, Right Channel
- Calculate Max. Output Voltage, Left Channel, Right Channel
- CSD Measurements
- Check compatibility with EBU R 128 (optional)

Part 2 – Analog headphone/earphone characteristics

- Measure Offset to 94 dBSPL, Run 1-5, Left Ear, Right Ear
- Measure Offset to 94 dBSPL, Run 1-5, Left Ear, Right Ear
- Measure Level, Left Ear (Laeq LE_A), Run 1-5, Left Ear, Right Ear
- Output Voltage, Left Ear (Vout LE_A), Run 1-5, Left Ear, Right Ear
- Calc. Vwbc, Left Ear (Vwbc LE_A), Run 1-5, Left Ear, Right Ear
- Additional Informative Measurements
- Peak of time signal (plausibility check), Left Ear, Right Ear
- Distortion (sinusoidal), Left Ear, Right Ear
- Electrical Impedance, Left Ear, Right Ear

Part 2 – Bluetooth® (A2DP) headphone/earphone characteristics

- Measure LAeq for Bluetooth® devices -10 dBFS, Run 1-5, Left Ear, Right Ear
- Calculate Mean LAeq, Left Ear, Right Ear
- Calculate Minimum LAeq, Left Ear, Right Ear

Part 1 & 2 – FM receiver tests

- LAeq Run 1-5, Left Ear, Right Ear, Both Ears - FM Receiver
- Calculate Mean LAeq, Left Ear, Right Ear, Both Ears - FM Receiver
- Measure Max. Output Voltage, Left Channel - FM Receiver
- Calculate Max. Output Voltage, Right Channel - FM Receiver

Exemplary measurement setup for EN50332 compliance of a Bluetooth headset on HMS II.3.